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Abstract
We report the results of antiferromagnetic resonance (AFMR) measurements
conducted on KCuF3 at various frequencies from 3.8 to 10.6 GHz at 4.2 K. The
resonance linewidth is first found to depend on the frequency, i.e., the lower the
frequency the greater the resonance linewidth, no matter whether the AFMR
field is forced on the easy axis or uneasy axis. Moreover, a linewidth peak seems
to exist for H ‖ [100]p at about 4 GHz. Based on the model of Yamada and
Kato (1994 J. Phys. Soc. Japan 63 289) and considering the Laudau–Lifshitz
damping term, the result of numerical calculation for the resonance linewidth
is in good agreement with the data of AFMR experiments.

The linewidth of magnetic resonance is characterized by various relaxation mechanisms: for
example, the specimen shape, the anisotropy, etc [1–6]. Because the anisotropy is related to
the temperature, the relaxation of ferro- and antiferro-magnetic systems, especially for the
antiferromagnetic material, is often investigated by a temperature-dependent effect [1, 7–9].
However, measurements of the antiferromagnet linewidths in the past were carried out only
at a few frequencies, and the values of the linewidths are not the same [8, 10]. For example,
the linewidths of MnF2, which is a two-sublattice antiferromagnet without Dzyaloshinsky–
Moriya interaction, are 39 Oe at 70 GHz, 5 Oe at 23 GHz and 4–9 Oe at low frequencies,
respectively [8]. Therefore, the linewidth seems to reduce with decreasing frequency.

In this paper, we report the results of AFMR of KCuF3 at frequencies varying from 3.8
to 10.6 GHz. The resonance linewidth is found to depend on the frequency, i.e., the lower the
frequency, the greater the resonance linewidth, no matter whether the AFMR is conducted on
the easy axis [110]p and its equivalent axes, or the uneasy axis [100]p, where [ ]p represents
an axis in a unit cell of a perovskite structure. Moreover, it seems that a linewidth peak
exists for H ‖ [100]p at about 4 GHz, In addition, two kinds of linewidth are first observed
to appear in the substantial uneasy direction of the spin [100]p axis at the lower-frequency
branch of the C-band. Based on the model of Yamada and Kato [11] and considering the
Laudau–Lifshitz damping term, the results of numerical calculation for the frequency–field

0953-8984/05/172749+06$30.00 © 2005 IOP Publishing Ltd Printed in the UK 2749

http://dx.doi.org/10.1088/0953-8984/17/17/024
http://stacks.iop.org/JPhysCM/17/2749


2750 L Li et al

Figure 1. Experimental data of the frequency–field (ω–H) relation. Calculated results are shown
by a dotted line for H ‖ [110]p and a dashed line for H ‖ [100]p .

diagram and resonance linewidth are in good agreement with the AFMR measurements, which
indicates that the nature of the unusual frequency dependence of the linewidth might come
from the DM interaction.

A KCuF3 single crystal was grown by the Bridgman method; it had high quality and had
been used in previous studies [10–12]. AFMR measurements were performed at 4.2 K, far
below TN = 39 K. A wide-band spectrometer operated from 2 to 20 GHz was employed to
investigate the existence of the eight-sublattice. The sample was placed at the bottom centre
of a rectangular cavity and a water-cooled magnet was rotated around a vertical axis of the
c-plan by a rotation mechanism. In order to lower the resonance frequency, Teflon is used to
fill the cavity.

Figure 1 shows the experimental data of the resonance frequency–field (ω–H) relation.
The circles are for H ‖ [110]p, the squares are for H ‖ [100]p. Figures 2(a) and (b) indicate
changes in the derivative peak-to-peak linewidth �Hpp as a function of frequency at 4.2 K for
H ‖ [100]p and H ‖ [110]p, respectively. The stars in figure 2 represent the second observed
absorption mode. The linewidth �Hpp can be found to depend apparently upon the frequency
and increases with decreasing frequency in the low-frequency branch for both directions.
Moreover, the distinct change of linewidth with frequency at H ‖ [110]p is significantly larger
than that at H ‖ [100]p, and the linewidth of the second mode occurring at H ‖ [100]p is wider
than that of the first mode. Obviously, the trend of the linewidth of KCuF3 is different from
the linewidth of MnF2 in which the magnetic structure is two-sublattice and DM interaction is
not exist.

Let us now calculate the frequency–field (ω–H) relation and the frequency dependence
of the linewidth in light of the eight-sublattice model developed by Yamada and Kato [11] but
taking into account the Laudau–Lifshitz damping term. According to the conventional AFMR
theory, the Hamiltonian can be written as

Ĥ = −2
∑

i> j

(JcSi · S j + DcSz
i · Sz

j) − 2
∑

l>m

JaSl · Sm +
∑

i> j

di j · (Si × S j )

+ µB

∑

k

Sk · gA · H + µB

∑

k′
Sk′ · gB · H, (1)
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Figure 2. Linewidth �Hpp as a function of frequency at 4.2 K. (a) H ‖ [100]p , (b) H ‖ [110]p .
The dashed line and the dotted line represent the calculated results for H ‖ [100]p and H ‖ [110]p ,
respectively.

where Jc = −190 K represents the intrachain exchange interactions between nearest-
neighbour (nn) ions in the c-axis [13], Ja � 0.01|Jc| means the ferromagnetic interchain
exchange interaction among nn ions in the c-plane [14], and Dc = 0.04 K produces an XY -
like anisotropy field which forces the spins to lie in the c-plane [14]. The third term represents
the Dzyaloshinsky–Moriya (DM) antisymmetric exchange interaction

∑
i> j di j · (Si × S j )

occurring between the nearest-neighbour (nn) spins along the c-axis [13, 15]. The last two terms
are Zeeman interactions for the spins having inequivalent g-tensors, gA and gB , respectively.
gA and gB defined along the three principal axes of the F− octahedron have been theoretically
and experimentally confirmed as [2, 3, 6]

gA =
( 2.49

2.05
2.14

)
, gB =

( 2.05
2.49

2.14

)
.

Because of these g factors, the spins are canted and divided into eight sublattices.
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In the next step, for simplicity of calculating the 24 secular equations, we rewrite the
equations of motion for the eight-sublattice as follows:

dMiα

dt
= [−γ [Mi × Hi ] − Ti ]α, (i = 1–8, and α = x, y, z), (2)

with

Mi = Mi0 + mi ,

Hi = Hi0 + hi ,

Ti = − αγ

|Mi |Mi × (Mi × Hi),

where γ = −gµB/h̄; Mi0 and Hi0 are the steady parts of the sublattice magnetization and
mean field, respectively; mi and hi represent the parts containing exp(iωt) in Mi and Hi ,
and Ti is the Laudau–Lifshitz damping term, respectively. Thus, the resonance frequencies
should be the eigenvalues of the matrix with 24 × 24 elements. From the expressions of the
Hamiltonian and the mean field Hi acting on the sublattice magnetization Mi , we have

H1 = gA

g
· H − AM5 + A′(M2 + M4) − B(M5 × d15) + HA1,

H2 = gB

g
· H − AM6 + A′(M1 + M3) − B(M6 × d26) + HA2,

H3 = gA

g
· H − AM7 + A′(M2 + M4) − B(M7 × d37) + HA3,

H4 = gB

g
· H − AM8 + A′(M1 + M3) − B(M8 × d48) + HA4,

H5 = gA

g
· H − AM1 + A′(M6 + M8) − B(M1 × d15) + HA5,

H6 = gB

g
· H − AM2 + A′(M5 + M7) − B(M2 × d26) + HA6,

H7 = gA

g
· H − AM3 + A′(M6 + M8) − B(M3 × d37) + HA7,

H8 = gB

g
· H − AM4 + A′(M5 + M7) − B(M4 × d48) + HA8,

(3)

where the first terms on the right-hand side are the external fields respectively modified by gA

and gB ; the second and the third terms respectively correspond to the exchange field from Jc

and Ja; the fourth terms come from DM interaction characterized by the following vector di j :

d15 = d73 = [−d, 0, 0],

d51 = d37 = [d, 0, 0],

d26 = d84 = [0,−d, 0],

d48 = d62 = [0, d, 0];
and the last terms HAi = (0, 0,− K

M2 Miz) (i = 1–8) are the XY -like anisotropy fields. In (3)
Mi = −NgµB〈Si 〉 (i = 1–8) is the magnetization of the i th sublattice, in which N is the
number of magnetic ions in the i th sublattice, g the g-factor of a free electron, and 〈 〉 a thermal
average. The coordinate system [x, y, z] is taken as parallel to the [100]p, [010]p and [001]p

axes, respectively.
Because of the difficulty of analytically solving such a large-scale system of equations,

the equations of motion (2) are numerically calculated to obtain the eigenfrequencies. In
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the calculation, the experimental data Jc = −190 K, Ja = 0.01|Jc|, Dc = 0.04 K, and
d = 0.027|Jc| are employed. The parameters in equation (1) are determined by [11]

A = 4|Jc|
Nγ 2h2

, A′ = 4Ja

Nγ 2h2
, B = 4

Nγ 2h2
, K = 4Dc

Nγ 2h2
, (4)

where γ = −gµB/h̄. Moreover, the first approximation

Mi0 × Hi0 = 0

is also used as the initial condition, and therefore we can obtain the linear equations of motion:

iω

γ
mi +

iαi ω

|Mi0|mi × Mi0 + mi × Hi0 + Mi0 × hi = 0, (i = 1–8). (5)

The calculated frequency–field diagram for the lowest-frequency mode and linewidth–
frequency relation are shown in figures 1 and 2. The dotted line and the dashed line in the
figures correspond to H ‖ [110]p and H ‖ [100]p, respectively. In the calculated eight
eigenmodes, we only show the two which are basically in accordance with the observed two
modes, and the detailed discussion for the multi-sublattice modes in KCuF3 will be published
elsewhere. Spin flop is suggested to occur at Hsf = | 1

2 (gA +gB) · H
g | = 500 Oe for H ‖ [110]p.

One can see from the figures that there are some slight differences between the
experimental data and the calculated curves. Because the analytical method used here is based
on the mean field approximation,exact agreement between experimental results and calculation
should not be expected. Nevertheless, the calculated result based on the interdependent effect
of the DM interaction and inequivalent g-tensors actually governing Hres in the c-plane has
reproduced the essential features of the experimental data.

Furthermore, it is difficult to derive the explicit expression of frequency–field relation for
each of the eight sublattices owing to the complexity of the 24 secular equations. However, by
taking the values of HDM , gA · H, gB · H, AMi , A′Mi , and HAi into the matrix with 24 × 24
elements, we can reasonably postulate the analytical expressions of both Hres and �Hpp for
the eight resonance modes of KCuF3 as follows:

Hres ∼ ω

γ

(
f

1

cos(4θ)
+ cos(4θ)

)
, (6)

�Hpp ∼ γ

k
ω

exp(m
ω
) + 1

, (7)

where θ is the angle between the [110]p axis and H; k, m and f are all adjustable parameters,
and k, m ∝ 1/Hres.

In summary, the resonance linewidth of KCuF3 is first observed to depend on the frequency,
i.e., the lower the frequency the greater the resonance linewidth, no matter whether the AFMR
field is forced on the easy axis or the uneasy axis. Moreover, a linewidth peak seems to exist for
H ‖ [100]p at about 4 GHz. The linewidth behaviour in KCuF3 is different from the behaviour
of the linewidth in usual two-sublattice antiferromagnets without the Dzyaloshinsky–Moriya
interaction in which the linewidth seem to reduce with decreasing frequency. In addition,
two kinds of the absorption linewidth are first found to take place in the substantial uneasy
direction of the spin [100]p axis at the lower-frequency (<5 GHz) branch of the C-band.
A numerical calculation considering the Laudau–Lifshitz damping term for the resonance
linewidth and frequency–field relation based on the model of Yamada and Kato [11] is in
good agreement with the AFMR measurements, which indicates that the nature of the unusual
frequency dependence of the linewidth might be suspected to come from the DM interaction.
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